
Presented at the 2003 American Control
Conference, Denver, Colorado

Interactive Mathematics on the Web: MathML for Signals and Systems Demonstrations

Michael J. Ross and Wilson J. Rugh
ECE Department

Johns Hopkins University
Baltimore, MD 21218

Abstract Mathematical Markup Language (MathML) can be used
both to render mathematical expressions and to encode the
meaning of mathematical expressions in an HTML document.
Thus MathML can be used to incorporate dynamic math content in
web documents; for example, math expressions that drive and are
driven by graphical displays. We will discuss two interactive
demonstrations in basic Fourier analysis that illustrate the
capabilities of MathML.

1. Introduction

Since the advent of the World Wide Web, content has been
produced using the simple HyperText Markup Language, or
HTML. In HTML, content is enclosed with “tags” that are
used to format text, create tables, control interactive content,
load images, and so on. The original specification of HTML
included a math tag that was intended to mark content as a
mathematical expression. Browser support for the math tag
has been slow to develop, and in the interim the technical
community has displayed equations using cumbersome
image files.

The World Wide Web Consortium (W3C), the standards
organization for internet technology, has updated the HTML
standard in recent years to include a very specific
implementation of the math tag called MathML, which is
short for Mathematical Markup Language.
[http://www.w3.org/math] This specification includes two
very different formats for creating math. First is
Presentation MathML, which focuses on cosmetic aspects
of rendering an equation in HTML.
[http://www.w3.org/TR/MathML2/chapter3.html] This is an
alternative to using image files, and the equations appear
exactly the same from browser to browser. There are a
variety of tools available to simplify creation of an equation
using Presentation MathML, though typically these tools do
not generate economical code.
[http://www.mathtype.com/en/products/]

The second flavor of MathML is called Content MathML,
and this language provides the capability to encode the
mathematical meaning of an equation or expression.
[http://www.w3.org/TR/MathML2/chapter4.html] Content
MathML is much more concise and structurally elegant, and

we have found it to be more suitable for making dynamic or
“live” equations because of the efficiency of the code.
Unfortunately, Content MathML currently has very limited
tools to assist an author in generating the code, and less
browser support than Presentation MathML.

Further details concerning Content and Presentation
versions of MathML can be found in the Appendix, and in
the following references:
[http://www.mathtype.com/en/reference/webmath/status/],
[http://www.mathmlconference.org/2002/],
[http://www.charlesriver.com/titles/mathml.html]

2. Application of Content MathML – Two Examples

This paper focuses on recent efforts to use Content MathML
in conjunction with JavaScript and Java applets to create
interactive demonstrations for basic signals and systems
topics. We will discuss two examples, both of which require
the use of Microsoft Internet Explorer 5.5+ with the
MathPlayer plugin on a Windows PC. (This lack of
portability is discussed in Section 4.) In both examples the
presentation portions of the demonstration are rendered in
Presentation MathML that was generated from a Microsoft
Word document using MathType software. The interactive
portions of the demonstrations use Content MathML in
conjunction with Java and JavaScript.

The first example, completed in Fall, 2002, is the
demonstration Discrete Time Fourier Series, URL
http://www.jhu.edu/~signals/dtfs-mathml4/newindex.htm . The
user can input the coefficients in a Fourier series expression
for a discrete-time, periodic signal, and then generate the
corresponding signal and its magnitude and phase spectra
with a mouse-click. Alternatively, the user can input the
spectra graphically with the mouse and then generate the
corresponding Fourier series expression and the signal, or
input the signal graphically with the mouse and then
generate the corresponding Fourier series expression and
spectra. The heart of the demonstration is a Java applet that
accepts user input and generates the graphical displays
and/or the MathML character strings that are passed to
JavaScript for equation display on the page.

http://www.w3.org/math
http://www.w3.org/TR/MathML2/chapter3.html
http://www.mathtype.com/en/products/
http://www.w3.org/TR/MathML2/chapter4.html
http://www.mathtype.com/en/reference/webmath/status/default.htm
http://www.mathtype.com/en/reference/webmath/status/
http://www.mathmlconference.org/2002/
http://www.charlesriver.com/titles/mathml.html

The second example, completed in Spring, 2003, is the
demonstration Continuous-Time Fourier Transform
Properties, URL http://www.jhu.edu/~signals/ctftprops-
mathml/index.htm . The user selects from a menu of typical
signals, and the corresponding magnitude and phase spectra
are shown, along with their mathematical expressions. Then
the user selects from a menu of operations on the signal,
such as time shift, or differentiation, and the results of this
operation on the time signal and its spectra are shown, again
with the corresponding mathematical expressions.

The objective in both demonstrations is to tightly couple the
mathematical expressions with graphics and visualization
tools to facilitate student comprehension of both the
intuitive and mathematical aspects of the topic. The extent
to which this objective is achieved is an important issue that
remains to be addressed. However, it is likely that a
substantial suite of material with interactive math
capabilities will be needed before a convincing conclusion
can be reached.

3. Structure of the CTFT Properties Code

We will briefly describe the code implementing the Fourier
transform properties demonstration. In the Java portion, the
main applet is MathContTime.java. This applet listens for
changes in the HTML drop-down boxes. If the signal x(t)
has been changed, the display window and corresponding
spectra are updated. If the operation type or modifier value
have been changed, the y(t) display and corresponding
spectra are updated.

To handle the signal representations, Signal.java contains
the code to generate any of the “ordinary” signals and the
code to implement the time-domain operations on the
signals. SimpleSignal.java is an empty class of which
Impulse and Doublet are subclasses. These handle the
special manipulations and displays required for the two
generalized signals that occur in the demonstration.
MagSpecLibrary.java generates the magnitude spectra for
ordinary signals and PhsSpecLibrary.java generates the
phase spectra.

Graphical display is handled by
OutputGraphPanelWrapper.java. In the main applet, all
OutputGraphPanel instances are separate applets. Instances
of the wrapper class are held in the main applet and form
links to WebOutputGraphPanel applets. Operation relies on
calling getAppletContext() and getApplet() through the
MathContTime applet. Since there may be differences in the
initialization time for each applet on the page, there is a
timer that reattempts contact with the designated
WebOutputGraphPanel applet if it is not initially found. For
more information on this potential problem area, see
[http://java.sun.com/docs/books/tutorial/applet/appletsonly/iac.ht
ml].

WebOutputGraphPanel.java is a small applet that allows an
OutputGraphPanel to function outside of a mother applet,
though the applet still relies on another applet to send data
via the wrapper class. Finally, OutputGraphPanel.java
draws graph labels and calls code from GraphPanel.java to
draw everything else.

In the JavaScript interface, the initialization code prepares
the left-hand side of equations and executes user-defined
functions clearXStrings() and clearYStrings() to set x(t)-
related signals to zero and y(t)-related signals to
“undefined.” MathML representations for x(t)-related
signals, based on the nature of the active signal, are
produced by setXStrings(). MathML representations for
y(t)-related signals are produced by setYStrings() based on
the nature of the active signal, the active signal operation,
and the active modifier value.

In the Web page, applets must have the MAYSCRIPT
property set to “true” to permit communication from
JavaScript to Java.
[http://developer.netscape.com/docs/manuals/communicator/jsgui
de4/livecon.htm]

The MathContTime applet appears as a slider and controls
the modifier value. When messages are received from the
drop-down boxes, setXStrings() and setYStrings() are
executed, changing the MathML fields. Also,
MathContTime changes the signal to be graphed in the six
output panels. The WebOutputGraphPanel applet appears as
a graph and accepts commands from MathContTime. The
signal type drop-down box executes setActiveSignalType()
in MathContTime and resets the active operation type to
“No operation.” The operation type drop-down box
executes setActiveSignalOperation() in MathContTime.

4. Portability Issues

Static mathematical expressions can be displayed with
Presentation MathML in either Internet Explorer or
Mozilla/Netscape by using W3C stylesheets. These
stylesheets determine which browser is running and which
method will be used to render MathML. The stylesheets
also allow Mozilla/Netscape to display Content MathML –
not something for which native functionality is provided.
From the user’s viewpoint, there is some overhead in that
Mozilla/Netscape requires that proper math fonts be
installed, and there is not yet a standard set of math fonts.
The situation is simpler with Internet Explorer, where the
free MathPlayer download includes a comprehensive set of
math fonts.

More important to our interests, it appears that Mozilla and
Netscape at present do not support the display of dynamic
mathematical expressions via MathML because updates to
MathML fields are treated as ordinary text. For
demonstrations of the type we have prepared, it is crucial to

http://www.jhu.edu/~signals/ctftprops-mathml/index.htm
http://www.jhu.edu/~signals/ctftprops-mathml/index.htm
http://java.sun.com/docs/books/tutorial/applet/appletsonly/iac.html
http://java.sun.com/docs/books/tutorial/applet/appletsonly/iac.html
http://developer.netscape.com/docs/manuals/communicator/jsguide4/livecon.htm
http://developer.netscape.com/docs/manuals/communicator/jsguide4/livecon.htm

be able to update MathML fields as program operation
continues. Internet Explorer with the MathPlayer plugin can
continue to process MathML after initial loading of the page.

Authors who wish to pursue dynamic MathML development
in Mozilla/Netscape should explore the Design Science Java
applet that processes both Presentation and Content
MathML.
[http://www.mathtype.com/en/products/webeq/#viewer]

5. Performance Issues

The overall performance of a given MathML demonstration
is largely based on the architecture decisions that trade
added functionality with performance. Our experience
indicates that the following should be avoided: excessive
redraw requests on Java applets and MathML fields; the
passing of large variables from Java to JavaScript;
excessive numbers of applets or MathML fields on a single
web page; and large downloads to the user. For example, in
the Fourier transform properties demonstration, MathML
generation is handled by JavaScript so that delays in passing
data between Java and JavaScript are avoided. Furthermore,
Content MathML is used to provide smaller downloads and,
in our experience, faster processing.

6. Appendix

We will describe MathML using the expression:

xy
xx

sin
53 −+

Presentation MathML code is written in the same left-to-
right order that the resulting expression is read. Definitions
of the tags used in this example are in the following table.

Tags for Presentation MathML

Tag Usage Notes
<math> A beginning and ending math tag must enclose

the entire expression.
<mrow> Designates a row of math that the browser will

attempt to keep together. In Presentation
MathML, mrow is used to enclose multiple
tags when only one is expected.

<mfrac> Denotes a division operation that is written in
the numerator-denominator format, instead of
inline format.

<mi> The enclosed data is the identifier of a variable.
<mo> The enclosed data is an operator.
<mroot> The first item it encloses is the radicand, and

the second is the index.
<mn> The enclosed data is a number.

Presentation MathML for the expression above is shown
below, with comments in footnotes.

<math>
 <mrow>
 <mfrac>
 <mrow>1
 <mi>x</mi>
 <mo>+</mo>
 <mroot>2
 <mrow>
 <mi>x</mi>
 <mo>-</mo>
 <mn>5</mn>
 </mrow>
 <mn>3</mn>
 </mroot>
 </mrow>
 <mrow>3
 <mi>y</mi>
 <mo>⁢</mo>4
 <mi>sin</mi>
 <mo>⁡</mo>5
 <mi>x</mi>
 </mrow>
 </mfrac>
 </mrow>
</math>

Content MathML has a tree structure, with operators as
nodes and variables or numbers as the leaves. The highest-
order operation is also the root of the tree. The structure and
tags for the example are shown below.

Tags for Content MathML
Tag Usage Notes
<math> A beginning and ending math tag must enclose

the entire expression.
<apply> Indicates that the next tag is an operator.
<divide/> Division operator.

1 This is the row containing the numerator, 3 5−+ xx .
2 The mroot tag requires that there be only two child elements, so
the quantity 5−x must be a row of its own.
3 This is the row containing the denominator, . xy sin
4 “⁢” is a special operator that takes account of the
fact that when we write two variable quantities next to each other,
separated by a space, we signify that they are being multiplied.
5 “⁡” is another special operator that connects two
adjacent identifiers, such as “sin” and “x” to make “sin x”.

Divide

Plus Times

x Root

Degree = 3 Minus

x 5

y Sin

x

http://www.mathtype.com/en/products/webeq/

<plus/> Addition operator.
<ci> The enclosed data is an identifier.
<root/> A radical expression.
<degree> A one-purpose tag for specifying the degree of

a radical.
<cn> The enclosed data is a number.
<minus/> Subtraction operator.
<times/> Multiplication operator.
<sin/> Sine operator.

The Content MathML code for the mathematical
expressions is:

<math>

<apply><divide/>6
<apply><plus/>

<ci>x</ci>
<apply><root/>7
 <degree>
 <cn>3</cn>
 </degree>

<apply><minus/>
<ci>x</ci>
<cn>5</cn>

</apply>
</apply>

</apply>
<apply><times/>8

<ci>y</ci>
<apply><sin/>

<ci>x</ci>
</apply>

</apply>

</apply

</math>

6 A tag ending with a slash is a self-terminating tag, and thus never
has a matching closing tag, unlike other tags in HTML and
MathML.
6 The root tag normally only has one child element (a number, an
identifier, or an apply tag, signifying a more complex expression),
but the optional degree tag specifies the degree of the radical. The
default is square root.

